Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37630260

RESUMEN

Amoebiasis is the second leading cause of death worldwide associated with parasitic disease and is becoming a critical health problem in low-income countries, urging new treatment alternatives. One of the most promising strategies is enhancing the redox imbalance within these susceptible parasites related to their limited antioxidant defense system. Metal-based drugs represent a perfect option due to their extraordinary capacity to stabilize different oxidation states and adopt diverse geometries, allowing their interaction with several molecular targets. This work describes the amoebicidal activity of five 2-(Z-2,3-diferrocenylvinyl)-4X-4,5-dihydrooxazole derivatives (X = H (3a), Me (3b), iPr (3c), Ph (3d), and benzyl (3e)) on Entamoeba histolytica trophozoites and the physicochemical, experimental, and theoretical properties that can be used to describe the antiproliferative activity. The growth inhibition capacity of these organometallic compounds is strongly related to a fine balance between the compounds' redox potential and hydrophilic character. The antiproliferative activity of diferrocenyl derivatives studied herein could be described either with the redox potential, the energy of electronic transitions, logP, or the calculated HOMO-LUMO values. Compound 3d presents the highest antiproliferative activity of the series with an IC50 of 23 µM. However, the results of this work provide a pipeline to improve the amoebicidal activity of these compounds through the directed modification of their electronic environment.


Asunto(s)
Amebicidas , Entamoeba histolytica , Amebicidas/farmacología , Antioxidantes , Electrónica
2.
Chem Biodivers ; 20(4): e202201076, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36815541

RESUMEN

Nowadays, light-emitting diodes (LED) provide an alternative source to sunlight with specific intensity and wavelength that promotes plant growth. The features offered by LED could also stimulate the production of secondary metabolites of pharmaceutical interest. This work analyzed the cultivation of oregano (Lippia palmeri S. Watson) in a floating root hydroponic system supplemented by full-spectrum LED artificial light. Growth indicators like height, diameter, number of shoots, and leaf length and width were measured. The essential oil (EO) composition from the leaves of wild and hydroponic conditions found thymol (41.8 %) as the main product for the former and carvacrol (47 %) in hydroponics. The antiproliferative activity of EOs on human colorectal cancer HCT-15 shows that 6.4 µg/ml for hydroponic and 7.4 µg/ml for the wild plant reduce more than 50 % the cell viability. Overall, this study indicates that hydroponic conditions and full spectrum LED modifies the composition of the EO of L. palmeri on compared with the wild plant, which effectively induces cell growth inhibition in human colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Lippia , Aceites Volátiles , Origanum , Humanos , Hidroponía , Aceites Volátiles/química , Aceites Volátiles/farmacología , Origanum/química , Hojas de la Planta , Aceites de Plantas/farmacología
3.
Nanomaterials (Basel) ; 12(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35808152

RESUMEN

Nanomaterials (NMs) solve specific problems with remarkable results in several industrial and scientific areas. Among NMs, silver nanoparticles (AgNPs) have been extensively employed as drug carriers, medical diagnostics, energy harvesting devices, sensors, lubricants, and bioremediation. Notably, they have shown excellent antimicrobial, anticancer, and antiviral properties in the biomedical field. The literature analysis shows a selective cytotoxic effect on cancer cells compared to healthy cells, making its potential application in cancer treatment evident, increasing the need to study the potential risk of their use to environmental and human health. A large battery of toxicity models, both in vitro and in vivo, have been established to predict the harmful effects of incorporating AgNPs in these numerous areas or those produced due to involuntary exposure. However, these models often report contradictory results due to their lack of standardization, generating controversy and slowing the advances in nanotoxicology research, fundamentally by generalizing the biological response produced by the AgNP formulations. This review summarizes the last ten years' reports concerning AgNPs' toxicity in cellular respiratory system models (e.g., mono-culture models, co-cultures, 3D cultures, ex vivo and in vivo). In turn, more complex cellular models represent in a better way the physical and chemical barriers of the body; however, results should be used carefully so as not to be misleading. The main objective of this work is to highlight current models with the highest physiological relevance, identifying the opportunity areas of lung nanotoxicology and contributing to the establishment and strengthening of specific regulations regarding health and the environment.

4.
Nanomaterials (Basel) ; 12(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35407184

RESUMEN

The hemolytic activity assay is a versatile tool for fast primary toxicity studies. This work presents a systematic study of the hemolytic properties of ArgovitTM silver nanoparticles (AgNPs) extensively studied for biomedical applications. The results revealed an unusual and unexpected bell-shaped hemolysis curve for human healthy and diabetic donor erythrocytes. With the decrease of pH from 7.4 and 6.8 to 5.6, the hemolysis profiles for AgNPs and AgNO3 changed dramatically. For AgNPs, the bell shape changed to a step shape with a subsequent sharp increase, and for AgNO3 it changed to a gradual increase. Explanations of these changes based on the aggregation of AgNPs due to the increase of proton concentration were suggested. Hemolysis of diabetic donor erythrocytes was slightly higher than that of healthy donor erythrocytes. The meta-analysis revealed that for only one AgNPs formulation (out of 48), a bell-shaped hemolysis profile was reported, but not discussed. This scarcity of data was explained by the dominant goal of studies consisting in achieving clinically significant hemolysis of 5-10%. Considering that hemolysis profiles may be bell-shaped, it is recommended to avoid extrapolations and to perform measurements in a wide concentration interval in hemolysis assays.

5.
J Inorg Biochem ; 231: 111772, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35279445

RESUMEN

Casiopeinas are a family of mixed chelate copper(II) complexes with antiproliferative and antineoplastic activities, results that have positioned them as an alternative for cancer treatment. Because DNA is one of their principal targets, it is of our interest to find out the effect of substituents on the diiamine ligands over mode of interaction. Therefore, we studied 21 Casiopeinas upon DNA by gel electrophoresis, UV-vis and circular dichroism (CD) spectroscopic techniques, previously studied by DFT calculations and Quantitative Structure-Activity Relationship (QSAR). According to electrophoresis results, the interaction modes between Casiopeinas with DNA may be through the intercalation or in the minor groove. UV-vis spectroscopy showed a hypochromic or hyperchromic effect as a consequence of each interaction. The analysis suggests the binding along the minor groove and intercalation are both influenced by the substituents in the diimine ligands and depend on the nature of the secondary moiety (acetylacetonate or glycinate). Additionally, a new band in electrophoresis and CD spectra suggests adducts formation. In general, we prove that molecules with the highest molecular weight, electron donating substituents and glycinate as secondary ligand are intercalating agents; unlike molecules with electron withdrawing substituents as chloride or nitro and acetylacetonate as secondary ligand which interact in the minor groove.


Asunto(s)
Cobre , ADN , Dicroismo Circular , Cobre/química , ADN/química , Electroforesis , Ligandos
6.
ACS Omega ; 6(44): 29882-29892, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34778661

RESUMEN

Halloysite clay nanotubes (HNTs) have been proposed as highly biocompatible for several biomedical applications. Various polymers have been used to functionalize HNTs, but scarce information exists about polystyrene for this purpose. This work evaluated polystyrene-functionalized HNTs (FHNTs) by comparing its effects with non-FHNTs and innocuous talc powder on in vitro and in vivo models. Monocyte-derived human or murine macrophages and the RAW 264.7 cell line were treated with 0.01, 0.1, 1, and 100 µg mL-1 FHNTs, HNTs, or talc to evaluate the cytotoxic and cytokine response. Our results show that nanoclays did not cause cytotoxic damage to macrophages. Only the 100 µg mL-1 concentration induced slight proinflammatory cytokine production at short exposure, followed by an anti-inflammatory response that increases over time. CD1 mice treated with a single dose of 1, 2.5, or 5 mg Kg-1 of FHNTs or HNTs by oral and inhalation routes caused aluminum accumulation in the kidneys and lungs, without bodily signs of distress or histopathological changes in any treated mice, evaluated at 48 h and 30 days post-treatment. Nanoclay administration simultaneously by four different parenteral routes (20 mg Kg-1) or the combination of administration routes (parenteral + oral or parenteral + inhalation; 25 mg Kg-1) showed accumulation on the injection site and slight surrounding inflammation 30 days post-treatment. CD1 mice chronically exposed to HNTs or FHNTs in the bedding material (ca 1 mg) throughout the parental generation and two successive inbred generations for 8 months did not cause any inflammatory process or damage to the abdominal organs and the reproductive system of the mice of any of the generations, did not affect the number of newborn mice and their survival, and did not induce congenital malformations in the offspring. FHNTs showed a slightly less effect than HNTs in all experiments, suggesting that functionalization makes them less cytotoxic. Doses of up to 25 mg Kg-1 by different administration routes and permanent exposure to 1 mg of HNTs or FHNTs for 8 months seem safe for CD1 mice. Our in vivo and in vitro results indicate that nanoclays are highly biocompatible, supporting their possible safe use for future biomedical and general-purpose applications.

7.
Nanomaterials (Basel) ; 11(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34835912

RESUMEN

The global market for plant-derived bioactive compounds is growing significantly. The use of plant secondary metabolites has been reported to be used for the prevention of chronic diseases. Silver nanoparticles were used to analyze the content of enhancement phenolic compounds in carrots. Carrot samples were immersed in different concentrations (0, 5, 10, 20, or 40 mg/L) of each of five types of silver nanoparticles (AgNPs) for 3 min. Spectrophotometric methods measured the total phenolic compounds and the antioxidant capacity. The individual phenolic compounds were quantified by High Performance Liquid Chromatography (HPLC) and identified by -mass spectrometry (HPLC-MS). The five types of AgNPs could significantly increase the antioxidant capacity of carrots' tissue in a dose-dependent manner. An amount of 20 mg/L of type 2 and 5 silver nanoparticle formulations increased the antioxidant capacity 3.3-fold and 4.1-fold, respectively. The phenolic compounds that significantly increased their content after the AgNP treatment were chlorogenic acid, 3-O-caffeoylquinic acid, and 5'-caffeoylquinic acid. The increment of each compound depended on the dose and the type of the used AgNPs. The exogenous application of Argovit® AgNPs works like controlled abiotic stress and produces high-value secondary bioactive compounds in carrot.

8.
Pharmaceutics ; 13(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34371692

RESUMEN

Silver nanoparticles (AgNPs) not only have shown remarkable results as antimicrobial and antiviral agents but also as antitumor agents. This work reports the complete characterization of five polyvinylpyrrolidone-coated AgNP (PVP-AgNP) formulations, their cytotoxic activity against human colon tumor cells (HCT-15), their cytotoxic effect on primary mouse cultures, and their lethal dose on BALB/c mice. The evaluated AgNP formulations have a composition within the ranges Ag: 1.14-1.32% w/w, PVP: 19.6-24.5% and H2O: 74.2-79.2% with predominant spherical shape within an average size range of 16-30 nm according to transmission electron microscopy (TEM). All formulations assessed increase mitochondrial ROS concentration and induce apoptosis as the leading death pathway on HCT-15 cells. Except for AgNP1, the growth inhibition potency of AgNP formulations of human colon tumor cancer cells (HCT-15) is 34.5 times higher than carboplatin, one of the first-line chemotherapy agents. Nevertheless, 5-10% of necrotic events, even at the lower concentration evaluated, were observed. The cytotoxic selectivity was confirmed by evaluating the cytotoxic effect on aorta, spleen, heart, liver, and kidney primary cultures from BALB/c mice. Despite the cytotoxic effects observed in vitro, the lethal dose and histopathological analysis showed the low toxicity of these formulations (all of them on Category 4 of the Globally Harmonized System of Classification and Labelling of Chemicals) and minor damage observed on analyzed organs. The results provide an additional example of the rational design of safety nanomaterials with antitumor potency and urge further experiments to complete the preclinical studies for these AgNP formulations.

9.
Nanomaterials (Basel) ; 11(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34443926

RESUMEN

Silver nanoparticles (AgNPs) have been studied worldwide for their potential biomedical applications. Specifically, they are proposed as a novel alternative for cancer treatment. However, the determination of their cytotoxic and genotoxic effects continues to limit their application. The commercially available silver nanoparticle Argovit™ has shown antineoplastic, antiviral, antibacterial, and tissue regenerative properties, activities triggered by its capacity to promote the overproduction of reactive oxygen species (ROS). Therefore, in this work, we evaluated the genotoxic and cytotoxic potential of the Argovit™ formulation (average size: 35 nm) on BALB/c mice using the micronucleus in a peripheral blood erythrocytes model. Besides, we evaluated the capability of AgNPs to modulate the genotoxic effect induced by cyclophosphamide (CP) after the administration of the oncologic agent. To achieve this, 5-6-week-old male mice with a mean weight of 20.11 ± 2.38 g were treated with water as negative control (Group 1), an single intraperitoneal dose of CP (50 mg/kg of body weight, Group 2), a daily oral dose of AgNPs (6 mg/kg of weight, Group 3) for three consecutive days, or a combination of these treatment schemes: one day of CP doses (50 mg/kg of body weight) followed by three doses of AgNPs (one dose per day, Group 4) and three alternate doses of CP and AgNPs (six days of exposure, Group 5). Blood samples were taken just before the first administration (0 h) and every 24 h for seven days. Our results show that Argovit™ AgNPs induced no significant cytotoxic or acute genotoxic damage. The observed cumulative genotoxic damage in this model could be caused by the accumulation of AgNPs due to administered consecutive doses. Furthermore, the administration of AgNPs after 24 h of CP seems to have a protective effect on bone marrow and reduces by up to 50% the acute genotoxic damage induced by CP. However, this protection is not enough to counteract several doses of CP. To our knowledge, this is the first time that the exceptional chemoprotective capacity produced by a non-cytotoxic silver nanoparticle formulation against CP genotoxic damage has been reported. These findings raise the possibility of using AgNPs as an adjuvant agent with current treatments, reducing adverse effects.

10.
Materials (Basel) ; 14(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073953

RESUMEN

The use of nanomaterials is becoming increasingly widespread, leading to substantial research focused on nanomedicine. Nevertheless, the lack of complete toxicity profiles limits nanomaterials' uses, despite their remarkable diagnostic and therapeutic results on in vitro and in vivo models. Silver nanoparticles (AgNPs), particularly Argovit™, have shown microbicidal, virucidal, and antitumoral effects. Among the first-line toxicity tests is the hemolysis assay. Here, the hemolytic effect of Argovit™ AgNPs on erythrocytes from one healthy donor (HDE) and one diabetic donor (DDE) is evaluated by the hemolysis assay against AgNO3. The results showed that Argovit™, in concentrations ≤24 µg/mL of metallic silver, did not show a hemolytic effect on the HDE or DDE. On the contrary, AgNO3 at the same concentration of silver ions produces more than 10% hemolysis in both the erythrocyte types. In all the experimental conditions assessed, the DDE was shown to be more prone to hemolysis than the HDE elicited by Ag+ ions or AgNPs, but much more evident with Ag+ ions. The results show that Argovit™ is the least hemolytic compared with the other twenty-two AgNP formulations previously reported, probably due to the polymer mass used to stabilize the Argovit™ formulation. The results obtained provide relevant information that contributes to obtaining a comprehensive toxicological profile to design safe and effective AgNP formulations.

11.
Pharmaceutics ; 13(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430184

RESUMEN

Nanomaterials quickly evolve to produce safe and effective biomedical alternatives, mainly silver nanoparticles (AgNPs). The AgNPs' antibacterial, antiviral, and antitumor properties convert them into a recurrent scaffold to produce new treatment options. This work reported the full characterization of a highly biocompatible protein-coated AgNPs formulation and their selective antitumor and amoebicidal activity. The protein-coated AgNPs formulation exhibits a half-inhibitory concentration (IC50) = 19.7 µM (2.3 µg/mL) that is almost 10 times more potent than carboplatin (first-line chemotherapeutic agent) to inhibit the proliferation of the highly aggressive human adenocarcinoma HCT-15. The main death pathway elicited by AgNPs on HCT-15 is apoptosis, which is probably stimulated by reactive oxygen species (ROS) overproduction on mitochondria. A concentration of 111 µM (600 µg/mL) of metallic silver contained in AgNPs produces neither cytotoxic nor genotoxic damage on human peripheral blood lymphocytes. Thus, the AgNPs formulation evaluated in this work improves both the antiproliferative potency on HCT-15 cultures and cytotoxic selectivity ten times more than carboplatin. A similar mechanism is suggested for the antiproliferative activity observed on HM1-IMSS trophozoites (IC50 = 69.2 µM; 7.4 µg/mL). There is no change in cell viability on mice primary cultures of brain, liver, spleen, and kidney exposed to an AgNPs concentration range from 5.5 µM to 5.5 mM (0.6 to 600 µg/mL). The lethal dose was determined following the OECD guideline 420 for Acute Oral Toxicity Assay, obtaining an LD50 = 2618 mg of Ag/Kg body weight. All mice survived the observational period; the histopathology and biochemical analysis show no differences compared with the negative control group. In summary, all results from toxicological evaluation suggest a Category 5 (practically nontoxic) of the Globally Harmonized System of Classification and Labelling of Chemicals for that protein-coated AgNPs after oral administration for a short period and urge the completion of its preclinical toxicological profile. These findings open new opportunities in the development of selective, safe, and effective AgNPs formulations for the treatment of cancer and parasitic diseases with a significant reduction of side effects.

12.
Mol Divers ; 25(4): 2289-2305, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32627094

RESUMEN

Since the beginning, natural products have represented an important source of bioactive molecules for cancer treatment. Among them, cardenolides attract the attention of different research groups due to their cardiotonic and antitumor activity. The observed biological activity is closely related to their Na+/K+-ATPase inhibition potency. Currently, the discovery of new compounds against cancer is an urgent need in modern pharmaceutical research. Thus, the aim of this work is to determine the physicochemical properties and substituent effects that module the antiproliferative activity of cardenolides on the human lung cancer cell line A549. We build and curate a library with results obtained from literature; molecular descriptors were calculated in PaDEL software, and SAR/QSAR analysis was performed. The SAR results showed that cardenolides were sensitive to modifications in C and D steroidal ring and required substituent groups with the function of hydrogen bond acceptor at the C3 position. QSAR models to doubly linked-type cardenolides indicated that properties as lipoaffinity and atoms with the capacity to be hydrogen bond acceptors are involved in the increment of antiproliferative activity on A549 cell line. In contrast, the presence and position of very electro-negative atoms on the molecule decreased the antiproliferative effect on A549 cells. These results suggest that the antiproliferative capacity of cardenolides on the cell line A549 is strongly related to substituent groups on the C3 position, which must not be carbohydrate. Additionally, the steroidal rings C and D must remain without modifications.


Asunto(s)
Cardenólidos
13.
J Phys Chem B ; 124(51): 11648-11658, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33320672

RESUMEN

Copper-containing compounds known as Casiopeínas are biologically active molecules which show promising antineoplastic effects against several cancer types. Two possible hypotheses regarding the mode of action of the Casiopeínas have emerged from the experimental evidence: the generation of reactive oxygen species or the ability of the compounds to bind and interact with nucleic acids. Using robust molecular dynamics simulations, we investigate the interaction of four different Casiopeínas with the DNA duplex d(GCACGAACGAACGAACGC). The studied copper complexes contain either 4-7- or 5-6-substituted dimethyl phenanthroline as the primary ligand and either glycinate or acetylacetonate as the secondary ligand. For statistical significance and to reduce bias in the simulations, four molecules of each copper compound were manually placed at a distance of 10 Å away from the DNA and 20 independent molecular dynamics simulations were performed, each reaching at least 30 µs. This time scale allows us to reproduce expected DNA terminal base-pair fraying and also to observe intercalation/base-pair eversion events generated by the compounds interacting with DNA. The results reveal that the secondary ligand is the guide toward the mode of binding between the copper complex and DNA in which glycinate prefers minor-groove binding and acetylacetonate produces base-pair eversion and intercalation. The CuII complexes containing glycinate interact within the DNA minor groove which are stabilized principally by the hydrogen bonds formed between the amino group of the aminoacidate moiety, whereas the compounds with the acetylacetonate do not present a stable network of hydrogen bonds and the ligand interactions enhance DNA breathing dynamics that result in base-pair eversion.


Asunto(s)
Cobre , ADN , Emparejamiento Base , Ligandos , Estructura Molecular
14.
Nanomaterials (Basel) ; 10(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708646

RESUMEN

Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5-100 µg/mL of metallic silver content (85-1666 µg/mL of complete formulation), is 10-17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.

15.
ACS Omega ; 5(21): 12005-12015, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32548379

RESUMEN

Silver nanoparticles (AgNPs) are the most used nanomaterials worldwide due to their excellent antibacterial, antiviral, and antitumor activities, among others. However, there is scarce information regarding their genotoxic potential measured using human peripheral blood lymphocytes. In this work, we present the cytotoxic and genotoxic behavior of two commercially available poly(vinylpyrrolidone)-coated silver nanoparticle (PVP-AgNPs) formulations that can be identified as noncytotoxic and nongenotoxic by just evaluating micronuclei (MNi) induction and the mitotic index, but present enormous differences when other parameters such as cytostasis, apoptosis, necrosis, and nuclear damage (nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs)) are analyzed. The results show that Argovit (35 nm PVP-AgNPs) and nanoComposix (50 nm PVP-AgNPs), at concentrations from 0.012 to 12 µg/mL, produce no changes in the nuclear division index (NDI) or micronuclei (MNi) frequency compared with the values found on control cultures of human blood peripheral lymphocytes from a healthy donor. Still, 50 nm PVP-AgNPs significantly decrease the replication index and significantly increase cytostasis, apoptosis, necrosis, and the frequencies of nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs). These results provide evidence that the cytokinesis-block micronucleus (CBMN) assay using human lymphocytes and evaluating the eight parameters provided by the technique is a sensitive, fast, accurate, and inexpensive detection tool to support or discard AgNPs or other nanomaterials, which is worthwhile for continued testing of their effectiveness and toxicity for biomedical applications. In addition, it provides very important information about the role played by the [coating agent]/[metal] ratio in the design of nanomaterials that could reduce adverse effects as much as possible while retaining their therapeutic capabilities.

16.
Micromachines (Basel) ; 11(4)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331467

RESUMEN

Skin burns and ulcers are considered hard-to-heal wounds due to their high infection risk. For this reason, designing new options for wound dressings is a growing need. The objective of this work is to investigate the properties of poly (ε-caprolactone)/poly (vinyl-pyrrolidone) (PCL/PVP) microfibers produced via electrospinning along with sorbents loaded with Argovit™ silver nanoparticles (Ag-Si/Al2O3) as constituent components for composite wound dressings. The physicochemical properties of the fibers and sorbents were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The mechanical properties of the fibers were also evaluated. The results of this work showed that the tested fibrous scaffolds have melting temperatures suitable for wound dressings design (58-60 °C). In addition, they demonstrated to be stable even after seven days in physiological solution, showing no macroscopic damage due to PVP release at the microscopic scale. Pelletized sorbents with the higher particle size demonstrated to have the best water uptake capabilities. Both, fibers and sorbents showed antimicrobial activity against Gram-negative bacteria Pseudomona aeruginosa and Escherichia coli, Gram-positive Staphylococcus aureus and the fungus Candida albicans. The best physicochemical properties were obtained with a scaffold produced with a PCL/PVP ratio of 85:15, this polymeric scaffold demonstrated the most antimicrobial activity without affecting the cell viability of human fibroblast. Pelletized Ag/Si-Al2O3-3 sorbent possessed the best water uptake capability and the higher antimicrobial activity, over time between all the sorbents tested. The combination of PCL/PVP 85:15 microfibers with the chosen Ag/Si-Al2O3-3 sorbent will be used in the following work for creation of wound dressings possessing exudate retention, biocompatibility and antimicrobial activity.

17.
J Inorg Biochem ; 206: 111043, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109662

RESUMEN

In this work, we present the synthesis, characterization, electrochemical studies, DFT calculations, and in vitro amoebicidal effect of seven new heteroleptic NiII coordination compounds. The crystal structures of [H2(pdto)](NO3)2 and [Ni(pdto)(NO3)]PF6 are presented, pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine. The rest of the compounds have general formulae: [Ni(pdto)(NN)](PF6) where N-N = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (44dmbpy), 5,5'-dimethyl-2,2'-bipyridine (55dmbpy), 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (47dmphen) and 5,6-dimethyl-1,10-phenanthroline (56dmphen). The size of NN ligand and its substituents modulate the compound electronic features and influence their antiproliferative efficiency against Entamoeba histolytica. 56dmphen derivative, shows the biggest molar volume and presents a powerful amoebicidal activity (IC50 = 1.2 µM), being seven times more effective than the first-line drug for human amoebiasis metronidazole. Also, increases the reactive oxygen species concentration within the trophozoites. This could be the trigger of the E. histolytica growth inhibition. The antiparasitic effect is described using NiII electron density, molar volume, estimated by DFT, as well as the experimental redox potential and diffusion coefficients. In general, amoebicidal efficiency is directly proportional to the increment of the molar volume and decreases when the redox potential becomes more positive.


Asunto(s)
Amebicidas/farmacología , Complejos de Coordinación/farmacología , Entamoeba histolytica/crecimiento & desarrollo , Níquel/química , Compuestos Organometálicos/farmacología , Amebicidas/química , Animales , Complejos de Coordinación/química , Cristalografía por Rayos X , Entamoeba histolytica/efectos de los fármacos , Modelos Moleculares , Compuestos Organometálicos/química
18.
RSC Adv ; 10(11): 6146-6155, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35495993

RESUMEN

Nowadays, Huanglongbing (HLB) disease, commonly known as "yellow dragon disease", affects citrus crops worldwide and has a devastating effect in the agro-industrial sector. Significant efforts have been made to fight the illness, but still, there is no effective treatment to eradicate the disease. This work is the first approach to evaluate the capacity of silver nanoparticles (AgNPs) to directly eradicate the bacteria responsible for Huanglongbing disease, Candidatus Liberibacter asiaticus (CLas), in the field. The AgNPs were administered by foliar sprinkling and trunk injection of 93 sick trees with remarkable results. Both methods produce an 80-90% decrease of bacterial titre, quantified by qRT-PCR in collected foliar tissue, compared with the control group. Scanning electron microscopy images show an essential reduction of starch accumulation in phloem vessels after AgNP treatments without evidence of bacteria in the analyzed samples. Compared with other effective methods that involve ß-lactam antibiotics, the potency of AgNPs is 3 to 60-times higher when it is administered by foliar sprinkling and from 75 to 750-fold higher when the administration was by trunk-injection. All these results allow us to propose this AgNP formulation as a promising alternative for the treatment of infected trees in the field.

19.
J Inorg Biochem ; 195: 83-90, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30928656

RESUMEN

Giardiasis is a widespread illness that affects inhabitants of underdeveloped countries, being children and seniors the highest risk population. The several adverse effects produced by current therapies besides its increasing ineffectiveness due to the appearance of resistant strains evidence the urgent need for new therapeutic approaches. We present the antigiardiasic effect of eight Cu(II) coordination compounds, which belong to the family Casiopeínas. Two of them, 4,7-diphenyl-1,10-phenanthroline(acetylacetonato)copper(II) nitrate (CasIII-Ha,36 µM) and 4,7-diphenyl-1,10-phenanthroline(glycinato)copper(II) nitrate (CasI-gly,36 µM) have shown the best antiproliferative effect in Giardia intestinalis trophozoite cultures, both with the higher lipophilic character of the series. The antiproliferative effect of these coordination compounds is attributable to its capacity to interact with the cellular membrane and to increase reactive oxygen species (ROS) concentration within the parasite since the first hours of exposure, (2-6 h). We found that these compounds mainly induced the cell death of trophozoites by apoptosis, contrary to metronidazole, which induces apoptosis and necrosis in the same ratio. The cytotoxic effects on lymphocytes and macrophages isolated from human peripheral blood allowed us to establish a selectivity index and in turn, identify and propose the best candidates to continue with the assays in animal models. The selected molecules do not include the most active compounds against trophozoites, instead of that, we propose the compounds 4',4'-dimethyl-2,2'-bipyridine(acetylacetonato)copper(II) nitrate (CasIII-ia,IC50 = 156 µM) and 4,7-dimethyl-1,10-phenanthroline(acetylacetonato) copper(II) nitrate (CasIII-Ea,IC50 = 125 µM), which possess an antiproliferative efficacy comparable with Metronidazole but also are those that produce the lowest effect on the viability of human lymphocytes and macrophages.


Asunto(s)
Antiprotozoarios/farmacología , Membrana Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Giardia lamblia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antiprotozoarios/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Cobre/química , Humanos , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Trofozoítos/efectos de los fármacos
20.
Toxicol Res (Camb) ; 8(2): 146-156, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30997018

RESUMEN

The continuous use of compounds contained in commodities such as processed food, medicines, and pesticides, demands safety measures, in particular, for those in direct contact with humans and the environment. Safety measures have evolved and regulations are now in place around the globe. In the case of pesticides, attempts have been made to use toxicological data to inform of potentially harmful compounds either across species, on different routes of exposure, or entirely new chemicals. The generation of models, based on statistical and molecular modeling studies, allows for such predictions. However, the use of these models is framed by the available data, the experimental errors, the complexity of the measurement, and the available computational algorithms, among other factors. In this work, we present the methodologies used for extrapolation across different species and routes of administration and show the appropriateness of developing predictive models of pesticides based on their type and mode of action. The analyses include comparisons based on structural characteristics and physicochemical properties. Whenever possible, the scope and limitations of the methodologies are discussed. We expect that this work will serve as a useful introductory guide of the tools employed in the toxicity assessment of agrochemical compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...